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RESUMO

Face spoofing consiste em simular caracteristicas biométricas faciais de uma pessoa de
maneira a personificd-la em um sistema de reconhecimento facial (por exemplo, em aplicacdes
de pagamento digital e midia social). Deteccado de vivacidade facial ou face anti-spoofing é o
problema de reconhecer ataques como estes. O problema de detec¢do de vivacidade facial e
sua fundamentacao tedrica sao apresentados, seguidos de um estudo de trabalhos relacionados.
Em seguida uma abordagem baseada no uso de profundidade estimada pela rede Pix2Pix para a
deteccdo de vivacidade facial em imagem € apresentada, implementada e finalmente testada em
protocolos relevantes para a avaliacdo em comparacao com o estado da arte.

Palavras-chave: Deteccao de vivacidade facial. Face Anti-Spoofing. Deteccdo de Ataque de
Apresentacao.



ABSTRACT

Face spoofing consists of simulating a person’s facial biometric traits in order to
impersonate them in a face recognition system (for example, in digital payment and social media
applications). Face liveness detection or face anti-spoofing is the problem of recognizing such
attacks. The problem of face liveness detection and its theoretical foundation are presented,
followed by a study of related work. Afterwards an approach based on using Pix2Pix-estimated
depth information for image face liveness detection is presented, implemented and finally tested
on relevant protocols for evaluation in comparison with the state of the art.

Keywords: Face Liveness Detection. Face Anti-Spoofing. Presentation Attack Detection.
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1 INTRODUCTION

In recent years, the use and capacity of mobile phones have grown so as to make
these devices an important part of everyday life. This growth was accompanied by a shift in
interactions; many activites that could only be done in a computer are now made available in the
user’s pocket. Important applications followed this tendency, including banking (from internet
banking to mobile applications) and documentation (from government-issued physical documents
to verified applications). This was only possible due to accurate verification capability, both in
hardware and software, with algorithms such as those of face recognition.

There are, however, strategies for misleading these verification systems, which become
easier as the verification becomes decentralized (i.e., the user is not required to be in a physical
installation of a company or institution to have their identity verified). For face recognition, a
range of spoofing strategies have been developed and are increasingly honed for improved attacks
of impersonation: for an example, a malicious invader A could pretend to be some other person
B by placing a photo of B in front of their phone’s camera in the face verification step of an
application’s authentication process - the algorithm would recognize the face and let the attacker
in. Naturally, access to privileged information and resources should be reserved to privileged
users only, and the impact of vulnerabilities to spoofing attacks such as this implies in a fragile
structure for very essential information exchanges in modern days.

Attacks are the most varied, exploiting weaknesses even in the model’s learning process
(such as bias and limited representation). In this context, it is fundamental that the task of face
anti-spoofing (FAS), also named presentation attack detection (PAD) and liveness detection (here,
a face’s image is said to be live if it is not a spoof), is further researched, so as to enhance current
models’ performance.

State-of-the-art FAS models often exploit secondary domain information, such as face
depth maps, due to their discriminative advantage over image-domain representations. Face
depth maps consist of 3D masks representing a person’s face shape. While for bonafide images
they maintain this aspect, for spoof images (since there is no face depth) the depth map is empty
(a black image). Figure 1.1 exemplifies face depth in the CASIA-FASD (Zhang et al., 2012)
dataset for samples of both classes.

Figure 1.1 illustrates two images: one bonafide (real, genuine) and one spoof.

Figura 1.1: Examples of bonafide (left) and attack (right) images from the CASIA-FASD dataset (Zhang et al., 2012)



12

1.1 MOTIVATION

Any system that uses face recognition is subject to face spoofing attacks and requires a
face anti-spoofing strategy for assurance of its proper functionality and security. Examples of
such systems are digital payment and social media applications.

At the same time, as prevention methods are improved, attack strategies are also further
developed. This adversarial scenario creates the need for continuous development of models that
can effectively detects spoofing attempts.

This work’s motivation is to, in its approach and explorations, improve the general
understanding of how security can be increased in the field of presentation attack detection.

1.2 CHALLENGES

In all its importance this task remains a difficult one, particularly due to variety in
imaging conditions (variations in light, contrast and color) and attack types among the train and
test phases (or train phase and real-world use). The principal aim of research in this field is to
improve model generalization capabilities with respect to this variety.

For this reason most evaluation protocols rely on cross-dataset scenarios or divide the
data in contrasting subsets - one example to this is the OULU-NPU dataset (Boulkenafet et al.,
2017), which proposes four intra-dataset protocols for challenging imaging variety among the
train and test sets.

1.3 FACE FORGERY

Another problem that has gotten growing attention over recent years is the one of face
forgery detection, which consists of recognizing that an image has been digitally manipulated
(e.g., to put someone’s face in it). Face forgeries are often used for the same purposes as face
spoofings, and therefore it could be expected of this work to be at least partially concerned with
this additional problem. Face forgery detection is, however, not as important a task as face
anti-spoofing because the way forgeries are presented often share characteristics with spoofs
(for example, showing a forgery to a camera by holding a screen that displays it - in this case, a
face anti-spoofing algorithm should detect this presentation as a display attack) or exploit other
security weaknessess of a system, such as injecting the forgery as if it was coming directly from
the acquisition device - then it can be argued that it would not be a matter of face anti-spoofing,
but of the hardware or software system’s integrity.

All of that depends, of course, on how a face recognition system operates. If the face
image is captured in a controlled environment, such as a mobile phone app, then forgeries
would fall into one of the two described cases; if, however, it is uploaded by a user in a browser
application, a forgery is simply another uploaded image and therefore forgery detection should
be used to prevent these attacks. Face forgery does not fit the scope of this work.

1.4 PROPOSED APPROACH

A common path for improving a model’s performance in FAS is to provide it with
additional information about the input image, i.e., to use both the RGB input and its correspondent
in another domain where discrimination is easier. One example of such a domain is face depth,
where spoofs are modeled to have none and bonafides are modeled to have a deep face mask.
Figure 1.2 illustrates how genuine and spoof images differentiate in the depth domain.
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Previous works report good results when using face depth information for presentation
attack detection (Atoum et al., 2017; Liu et al., 2018; Shao et al., 2019; Wang et al., 2019, 2020c;
Zhang et al., 2020; Zheng et al., 2021; Wang et al., 2021b), as explored in Chapter 3.

Figura 1.2: Examples face depth maps of bonafide (left) and attack (right) images from the CASIA-FASD dataset
(Zhang et al., 2012). The depth of most attack types will be completely empty because the image consists of a plain
surface and not an actual face.

The approach proposed in this work is to use a a deep learning-based strategy for
detecting face liveness in images by processing information in the image (RGB) and depth
domains, with the particular condition of the depth domain information being obtained with the
Pix2Pix network (Isola et al., 2017), which has previously shown high effectiveness in qualitative
evaluation of image domain translation performance in many instances of the problem (this
network is further explained in Chapter 2).

1.5 OBJECTIVES

This work aims to answer four main questions regarding the proposed approach. The
context for each question is further developed in the next chapters, and Chapters 5 and 6 discuss
conclusions.

The first question is whether and how auxiliary depth information enhances a classifier’s
performance, i.e., if and how much a model’s prediction and generalization capabilities are
improved once depth information is provided to it.

The second relates to how an input’s RGB image and corresponding depth map should
be given to input as the classifier network, a procedure that this work refers to as the fusion
method (see Chapter 4). The two considered procedures are concatenation and blending.

Since the proposed approach is classifier model-agnostic, it is easily modifiable to use
different backbones for classification. The effectiveness of the recent ConvNeXt family (Liu
et al., 2022) is evaluated for this task both with and without auxiliary depth information.

The final question is that of the effectiveness of the Pix2Pix network for face depth
estimation in the context of face anti-spoofing, considering that the depth maps are very different
between spoofs and genuine images. This is the main consideration in this work.
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1.6  CONTRIBUTIONS

This work successfully explores all the posed questions and provides answers for
them with the support of experiments on different intra- and cross-dataset protocols from the
CASIA-FASD (Zhang et al., 2012) and Replay-Attack (Chingovska et al., 2012) datasets. Both
the performed experiments and the subsequent discussions are available in Chapter 5. This allows
for reinforced understanding of auxiliary domain information effects on model performance in
two aspects: prediction performance and generalization capability.

1.7 OUTLINE

The chapters in this work are organized as follows. Chapter 2 describes fundamental
concepts and metrics related to liveness detection. Chapter 3 presents a study of related works.
Chapter 4 presents this work’s proposed approach, which is evaluated as described and presented
in Chapter 5. Limitations and possibilites for future work are finally discussed in Chapter 6.
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2 THEORETICAL BACKGROUND

Relevant concepts and metrics related to the field of face liveness detection and networks
used in Chapters 4 and 5 are now presented. A foundational understanding of machine learning
is expected from the reader.

2.1 CONCEPTS

A presentation is the capture of a face through an adequate acquisition device (i.e., a
picture of the user’s face). It can be an attack or a bonafide (genuine presentation).

The task of liveness detection is framed as a binary classification problem where attacks
and bonafides belong to the positive and negative classes, respectively.

2.2 METRICS

The Attack Presentation Classification Error Rate (APCER) represents the proportion
of attack presentations incorrectly classified as bonafide, that is, the false negative (FN) rate
among false negatives and true positives (T P), i.e.,

FN
APCER = ——. 2.1
FN+TP
Similarly, the Bonafide Presentation Classification Error Rate represents the propor-
tion of bonafide presentations incorrectly classified as attacks, that is, the false positive (F P) rate
among false positives and true negatives (T'N), i.e.,
FP
BPCER = ———. (2.2)
FP+TN

The Average Classification Error Rate is the average of the APCER and BPCER
metrics, 1.e.,

APCER+ BPCER
> .

The Half Total Error Rate is the average between the false acceptance rate (FAR,
%) and false rejection rate (FRR, %), i.e.,

ACER =

(2.3)

FAR + FRR
> .

HTER = (2.4)

2.3 NETWORKS

This section presents network architectures that are applied to this work’s approach in
later chapters. The first, Pix2Pix, will be used for depth estimation (i.e., translation from the
image domain to the depth domain), while the rest (ResNet, ConvNeXt and FeatEmbedder) is
used for liveness classification.
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Figura 2.1: Image-to-image translation examples. Source: Isola et al. (2017).

2.3.1 Pix2Pix

The Pix2Pix network, introduced by Isola et al. (2017), is a conditional generative
adversarial network (GAN) where the generator is an encoder-decoder model with skip connections
between symmetrical layers (a U-Net) and the discriminator considers only one patch of the image
at a time (the discriminator is run convolutionally across the image and the final output is an
average of all its results). Figure 2.1 shows instances of the image-to-image translation problem
where this network has shown good results. Figure 2.2 illustrates how the U-Net generator
network compares to classic generator encoder-decoder networks: the encoder-decoder networks
have no concatenation connections between layers.

(a) Encoder-Decoder network (b) U-Net network

Figura 2.2: Possibilities for generator networks. Pix2Pix uses U-Net. Based on Figure 3 of Isola et al. (2017).

Figure 2.3 illustrates the main difference between conditional and unconditional GANSs.
While in a traditional (unconditional) GAN the generator only receives as input a noise vector z
and the discriminator receives as input either the generator’s output G (z) or a real sample x, in a
conditional GAN both the generator and the discriminator networks have access to a conditioning
input that serves as control to the desired output, that is, the generator receives as input both z
and x and the discriminator receives as input both G(z, x) and x.

2.3.2 Backbone Architectures

For backbone classifier networks, two families and one individual model have been
chosen. The two families are ResNet and ConvNeXt; the individual model, FeatEmbedder, is the
same classifier network as in a similar work (Wang et al., 2021b) which is described in Chapter 3.

Residual Networks, or ResNets (He et al., 2015), compose a classic architecture for
deep learning in computer vision. Their main contribution is the introduction of learning residual
functions which reference layer inputs instead of learning unreferenced functions. This intuitively
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(a) GAN architecture (b) Conditional GAN (cGAN) architecture

Figura 2.3: Comparison of GANs and cGANS

allows network layers to form modularized understanding of images and has been shown to
improve optimization and accuracy. Figure 2.4 demonstrates how a residual block works in
comparison to non-residual blocks: the residual connection allows the block to learn in an
independent manner.

x T
! !
weight layer weight layer T
H(z) y R F(z) y Rety identity
weight layer weight layer
l RelLU
Flz)+z €
| RelU
(a) Block with no residual connections (b) Residual block

Figura 2.4: ResNet block comparison. Based on Figure 2 of He et al. (2015).

Over the years since ResNets, Transformer networks - which come from the field of
Natural Language Processing, based on attention function as opposed to convolutions - have
shown great performance, often superior to convolutional networks, in a range of computer vision
tasks. This success is mostly attributed to the transformer aspect of these networks, i.e., attention
functions are considered better suited for these tasks. Liu et al. (2022) argue, however, that this
success is due to other design decisions - many that could be applied to convolutional neural
networks as well. With that in mind, the authors of this paper develop ConvNeXt, a family of
purely convolutional networks based on ResNets that follow the design of Swin Transformers.
This covers different characteristics of the network, from the training procedure to kernel sizes.
These detail interventions render the authors state-of-the-art results in different computer vision
tasks. Figure 2.5 compares ResNet blocks to ConvNeXt blocks.

Wang et al. (2021b) use as a classifier network the model to be in this work denominated
as FeatEmbedder. The authors do not discuss the reasoning behind the model choice, and it is
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Figura 2.5: Comparison between ResNet and ConvNeXt blocks. Based on Figure 4 of Liu et al. (2022).
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Figura 2.6: FeatEmbedder architecture. Number below layer indicate input resolution, and all layers are followed
by batch normalization and ReLU steps. For more details, please refer to the official implementation (Wang et al.,
2020b).

made available in their public GitHub repository (Wang et al., 2020b). Figure 2.6 illustrates its
architecture.
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3 RELATED WORK

This chapter explains all the datasets and methods proposed in studied works. Current
challenges in the field are discussed, as are the difficulties with datasets.

3.1 DATASETS

With the growth in the field of face liveness detection research, there have been many
different approaches to dataset collection and what matters in a dataset. For some works, for
example, multiple image modes are important, as many methods take advantage of information
external to what an RGB image can entail. Currently, there is a focus on sample abundance and
variability in acquisition conditions (such as subject movement, camera quality and environmental
light), subject characteristics (gender, race, etc) and attack methods. Table 3.1 summarizes the
studied datasets.

Name Year | Citation Samples Subjects | Attack types | Additional description

NUAA 2010 | Tan et al. (2010) 5105 real, 7509 fake | 15 1

PRINT-ATTACK | 2011 | Anjos e Marcel (2011) 200 real, 200 fake 50 1

CASIA 2012 | Zhang et al. (2012) 150 real, 450 fake 50 3

Replay-Attack 2012 | Chingovska et al. (2012) | 200 real, 1000 fake | 50 3 Different recording conditions

MSU-MFSD 2015 | Wen et al. (2015) 110 real, 330 fake 55 3

MSU-USSA 2016 | Patel et al. (2016) 1140 real, 9120 fake | 1140 2 Multiple devices for replay spoofing;

MLFP 2017 | Agarwal et al. (2017) 150 real, 1200 fake 10 2 Visible, near infra-red and thermal modes for each sample
Oulu-NPU 2017 | Boulkenafet et al. (2017) | 990 real, 3960 fake | 55 4 Varied environments

Siwv 2018 | Liu et al. (2018) 1320 real, 3300 fake | 165 6 Varying subject movements, camera angles and facial expressions
ROSE-Youtu 2018 | Lietal. (2018) 3350 in total 20 3

SiW-M 2019 | Liu et al. (2019c¢) 660 real, 968 fake 493 13 Different scenarios (varying movement, light, camera quality, distance to camera)
HQ-WMCA 2020 | Mostaani et al. (2020) 555 real, 2349 fake | 51 10 Focus on varied attacks and a multi-modal character

DMAD 2020 | Wang et al. (2020c) 900 real, 1800 fake | 300 6

Tabela 3.1: Studied datasets’ main characteristics.

This work’s evaluation protocols rely on the CASIA-FASD and Replay-Attack datasets.
For the next section, all acronyms for datasets and challenges mentioned in the results of methods
that have been studied are described in Table 3.2.

Acronym | Dataset or Chall C plated by this study
E NenuLD No

H In-house Does not apply
L Chalearn Face Anti-Spoofing Challenge | Yes

R ROSE-Youtu Yes

A SMAD No

C CASIA-FASD Yes

Cy CASIA-MFSD No

Cs CASIA-SURF No

D DMAD Yes

1 Replay-Attack Yes

M MSU-MFSD Yes

N NUAA Yes

S Siw Yes

Su SiW-M Yes

w HQ-WMCA Yes

Y The Extended Yale Face Database B No

Tabela 3.2: Datasets and Challenges mentioned in studied methods’ results.

3.2 METHODS FOR FACE ANTI-SPOOFING

Tan et al. (2010) implement a lambertian model with two different strategies for obtaining
latent features and two extensions to a sparse logistic regression model that make it faster and
more accurate.
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Chingovska et al. (2012), alongside presenting a dataset that remains relevant to this
day, study the effectiveness of using texture features based on Local Binary Patterns and their
variations on classification. The reported results present no consistency in regards to types of
attacks or cross-database scenarios.

Wen et al. (2015) propose to approach detectyion with an ensemble of two Support
Vector Machine (SVM) classifiers trained for different attacks and fed an Image Distortion
Analysis (IDA) feature vector extracted from specular reflection, blurriness, chromatic moment
and color intensity information. The authors list as future work the development of features
tailored to specific use cases so as to facilitate the task.

Yang et al. (2015) also work on tailored information, introducing a strategy based on
identifying each individual in a system to use spoofing classifier specialized on the individuals.
This approach does not escalate.

Patel et al. (2016) build on top of the IDA-based strategy by using different intensity
channels, image regions and feature descriptors for extracting information on surface reflection,
moire patterns, color distortion and shape deformation. One proposed idea for future work
is to combine this method with movement cues, such as eye blinking, to improve detection
performance.

Li et al. (2016) extract features for detection with a CNN. The extracted features go
through a Principal Component Analysis (PCA) process in order to prevent overfitting and reduce
dimensionality, and are then finally fed into an SVM for classification. There could be room
for improvement in using a secondary neural network in the intermediary process instead of
applying the traditional PCA method.

Boulkenafet et al. (2016) recognize that using luminance information to decide liveness
is a relevant strategy and then propose to use color textures instead. Some common approaches
for improved performance are not implemented and listed as future work, such as normalizing
the input to the face’s bounding box. Furthermore, the authors incentive the study of whether
different color aspects prove useful in detecting different types of attacks.

Killioglu et al. (2017) use eye (pupil) movement detection for determining whether a
sample is real or not. This approach is shown to perform worse on glass-wearing subjects, and
would not work against certain present-day masked attacks.

Atoum et al. (2017) introduce the first approach studied that uses depth estimation for
detecting liveness. Their method consists of a two-stream CNN, where one stream extracts local
features while the second obtains holistic depth (i.e., checks whether the image has a face-like
depth pattern). This approach achieved state-of-the-art results and the authors suggested as future
work a deeper study of possible stream fusion strategies.

Chan et al. (2018) propose using as input to the model two images: one taken with a
flash (weaker than a comercial camera flash) and one without. This would make it easier to handle
low light and noise scenarios and would enhance differences between attackers and legitimate
users. The proposed method uses descriptors to capture texture and structure from both images.
The approach of taking two pictures in different conditions, however, relies on specific hardware
and would not apply to many scenarios where face liveness detection is relevant.

Ito et al. (2017) present a case study of face liveness detection, showcasing an approach
that consists of classifying with an SVM from CNN-generated features. A possible enhancement
to the method would be to further improve the CNN architecture to skip the SVM.

Lietal. (2018) propose an unsupervised domain adaptation scheme to learn the classifier
for the target domain where an embedding function maps the source and target domains to a
space where distribution similarity can be measured and optimized. The authors list as future
work the application of this strategy to zero-shot scenarios.
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Liu et al. (2018) reach state-of-the-art results with a model that consists of two parts,
namely a CNN for estimating face depth (with pixel-wise supervision) and an RNN for estimating
rPPG (remote photoplethysmography) signals (sequence-wise supervision). These two parts are
fused for liveness detection.

Singh e Arora (2018) consider the average intensity between indicators of eye blink
sequence and lip and chin movement, classifying liveness by comparing the calculated average to
threshold values. A possible direction for improvement would be to feed a neural network with
the intensity sequences instead of calculating average values.

Jourabloo et al. (2018) introduce a strategy of de-spoofing for liveness classification.
More specifically, the presented model uses a CNN for dividing an input image into live content
and spoof noise (which is modeled via the loss function to be zero in the case of live samples).
Achieved results are on level with state of the art, though this model remains vulnerable to
low-resolution images.

Luo et al. (2018) argue that single-scale schemes (i.e., those where the input image
is cropped to the face bounding box before being fed to the model) exclude possibly valuable
information present in the background, and propose instead to use multiple bounding boxes for
cropping, forming a sequence of different scales from a single image which can then be used
with LSTMs for feature generation and consequent classification. Possibilities for future work
include a learnable decision of scales for sequence generation, which could enhance background
information capture.

Liu et al. (2019c¢) approach the problem with a deep tree network, partitioning samples
into semantic subgroups in an unsupervised manner. This enable the decision making process to
be specialized, as the classification is done based only on similar attacks. Reported results are on
par with state of the art.

Chen et al. (2020) argue that many existing methods are hindered by illumination
variation, and so propose an illumination-invariant method based on a two-stresm convolutional
neural network which works on two complementary spaces: the original imaging space (RGB),
with detailed texture at the cost of high light sensitivity, and the illumination-invariant multi-scale
retnex space (MSR), with lower light sensitivity and face information. The MSR images offer
discriminative information for face spoofing detection, and the two network streams are fused
with an attention-based method. Reported results achieve state-of-the-art levels.

Liu et al. (2019b) take advantage of a Microsoft Kinect device as input for a liveness
classification network, which does not fit into this work’s scope but demonstrates a clever use of
the technology.

Liu et al. (2019a) report the state of the art through the lens of a face liveness detection
challenge (built around the CASIA-SURF dataset) and its results. The first Observation is that
the problem remains challenging due to lack of generalization in the following aspects: for
intra-dataset testing, there is often still a performance gap between testing and validation, and
for cross-dataset scenarios, existing methods often rely too heavily on known data and may be
found fragile once confronted with unknown acquisition devices, attack methods and spoofing
mediums. Another issue is that the ubiquitous use of softmax loss might lead models to value
arbitrary cues which are not actually indicators of spoofing - when such cues disappear during
testing, models fail to generalize. The authors also argue that supervision should be designed
from essential differences between live and spoof faces, such as rPPG signals (as they can reflect
human physiological signs), depth imaging, light reflection and (in the case of videos) inter-frame
variations. Finally, the authors warn readers about less recent models’ incapability to handle new
3D masks in particular.
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Yang et al. (2019) use LSTM networks for classification and argue that capturing a large
dataset is an easier task in the case of face spoofing than often regarded, obtaining data from a
video social network. The legal aspect of this collection is not discussed.

Shen et al. (2019) present a multi-stream, bag-of-local-features-based CNN trained on
the CASIA-SURF dataset that renders good results on the ChalLearn challenge.

Shao et al. (2019) propose to learn a feature space shared between domains through multi-
adversarial discriminative domain generalization with auxiliary depth. The adversarial scheme
consists of a generator producing domain-shared features and multiple domain discriminators, so
that learned features are domain-wise indistinguishable. Reported results are state-of-the-art.

Wang et al. (2019) present a multi-modal approach where four branches (namely RGB,
depth, infrared and a concatenation of all three) are fused with a spatial and channel attention
module. Reported results are competitive with the state of the art.

Koshy e Mahmood (2019) combine texture analysis with convolutional neural networks,
where a nonlinear-diffused image is fed into a CNN. This work shows that the smoothness of a
diffused image can be an important factor in determining an image’s liveness.

Li et al. (2019) observe that, when it comes to replay attacks, motion blur analysis is
an useful aspect for classification, as blur width and intensity variation are different in fake and
real input samples. The classification strategy the authors present is essentially to extract blur
intensity and with features with a convolutional neural network and a local similar pattern method,
respectively, and then fuse those features for detection. Reported results are competitive with the
state of the art, and suggested improvements include exploring better feature fusion strategies.

Wang et al. (2020c) seek to mix depth and movement in pattern recognition, with a
residual spatial gradient block for detecting discriminative details, a spatio-temporal propagation
module for encoding spatio-temporal information, and a contrastive depth loss for improved
depth-supervised attack detection generality. This work also demonstrate the effectiveness of
using depth maps in this task. Achieved results are state-of-the-art.

Wang et al. (2020a) present a strategy based on two steps, namely a disentangled
representation learning one and multi-domain learning one (which starts off with the first step’s
output as its input). This strategy renders the authors state-of-the-art results.

Garg et al. (2020) propose the use of a deep belief network for liveness classification.
The results are not, however, presented on the most relevant datasets of the time of publication.

Heusch et al. (2020) explore the use of SWIR (shortwave infrared) as input to recent
CNN-based models, where a difficulty for generalization is found. The authors suggest two
possible reasons: the usage of different wavelengths in the SWIR between datasets and the
difference in image quality between datasets. Something to note is that only two datasets were
used, as SWIR input is not as widespread a capture modality as others.

Zhang et al. (2020) introduce an adversarial scheme with auxiliary texture and depth
supervision where the learning process is enhanced by mixing samples’ disentangled liveness
and content features. Reported results are competitive with the state of the art.

Deb e Jain (2021) use a self-supervised regional fully convolutional network trained to
learn local discriminative cues from the input’s facial regions. Reported results are comparable to
the state of the art. The authors suggest that this approach is severly hindered by small amounts
of data and low-resolution data.

Yu et al. (2020) apply a central difference convolutional network to the problem,
improving it with a neural architecture search and multiscale attention fusion module. The buse
of central difference convolutions render the authors results competitive with the state of the art.

Jia et al. (2020) develop an end-to-end single-side domain generalization framework
where the learned generalized feature space is such that real samples are grouped regardless of
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their domain and spoof samples are grouped by domain (and distant from the real region). This
is enabled by the employment of an asymmetric triplet mining strategy. Reported results are
state-of-the-art, and the authors suggest as future work the use of asymmetric design for dividing
fake faces according to attack types rather than databases.

Liu et al. (2021b) argue that current work does not generalize well when there is a
variety of presentation attacks because they cannot extract features well enough and thus propose
a multi-modality data-based two-stage cascade framework that can selectively fuse low- and
high-level features from different modalities to improve feature representation. This idea renders
the authors state-of-the-art results.

Zheng et al. (2021) use a two-stream spatial-temporal network to explore both depth and
multi-scale information with a temporal shift module, which can extract temporal information
without additional calculations by separating data movement and calculation in convolutions, and
a depth information estimation network, which contains an attention module based on estimated
depth and fusions multi-scale features from both streams. Reported results are competitive with
the state of the art.

Liu et al. (2021a) recognize that many modalities usually help classification yet are not
very common as input, and so introduce an RGB-based strategy that can be extended with other
modalities during testing by translating their content.

Chen et al. (2021) seek to generalize accross different acquistion devices with a two-
branch scheme. The first branch extracts camera-invariant spoofing features from a high-frequency
domain and the second branch extracts both low- and high-frequency features from an enhanced
image. Reported results are competitive with the state of the art.

Wang et al. (2021b) generate depth maps in an adversarial scheme to then feed a classifier
network with the source RGB input and intermediate features from the adversarial scheme’s
generator network. Reported results are competitive with the state of the art. This work also
demonstrates how well-separated depth maps are when compared to source images.

Purnapatra et al. (2021) report on the Face Liveness Detection Competition, 2021 edition.
This competition was open to both academia and industry and focused on generalizability of
models. General performance of competitors was worse than in other competitions, which is
attributed by the authors to increased complexity (i.e., more attack types and instruments) and
the absence of a training dataset (competitors used whatever training resources were available).

Sanghvi et al. (2021) employ three subnetworks to detect different types of attacks (print,
replay and mask attacks). This approach allows the reporting of type of attack detected without
computational overhead. Possibilites for future work include exploring different architectures for
each subnetwork and applying the strategy to other biometric attack detection tasks.

George e Marcel (2021) study the effectiveness of vision transformers for zero-shot face
anti-spoofing, fine-tuning a source vision transformer for transfer learning. This very simple
intervention allows for results that are competitive with the state of the art.

Quan et al. (2021) present a semi-supervised scheme that requires few training samples
(about 50, as the authors describe it). During training, the model progessively adopts unlabeled
data with reliable pseudo labels, exploiting the temporal consistency in videos to make this easier
(i.e., it is easier to determine the liveness of a frame when the liveness of a neighbour frame is
already known). Reported results are competitive with the state of the art.

Wang et al. (2021a) apply an unsupervised model adaptor scheme to adapt the trained
model to new domains, seeking an improvement in domain adaptation and generalization. This
renders competitive results.

Wang et al. (2022) split the complete image representation into content and style
representations, which are obtained in an adversarial scheme. Furthermore, the style features are
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refined through contrastive learning, which allows for clusterizing classes regardless of domain.
Reported results are highly competitive with the state of the art.
Table 3.3 presents an overview of results for the studied methods.

Tabela 3.3: Related works results summary. Datasets are mentioned by their acronyms as presented in Table 3.2,
and cross-dataset results are indicated by * superscripts. Numbers after acronyms indicate protocols.

Year Work Dataset Results
2012 I 13.87% HTER
Chingovska et al. (2012) N 13.17% HTER
C 18.21% HTER
I 7.41% HTER
2015 | Wen et al. (2015)
C 13.3% EER
M 8.58% EER
C 4.95% EER
Yang et al. (2015) I 3 51% HTER
2016 *M 9.27% HTER
Patel et al. (2016) il | 3.5% HTER
*C 2% HTER
. I 2.9% EER, 6.1% HTER
Liet al. (2016) C 45% EER
I 0.4% EER, 2.8% HTER
C 2.1% EER
Boulkenafet et al. (2016) lﬁ ;‘gj;fﬁferage STER
*C 37.7% Average HTER
*M 33.9% Average HTER
2017 | Killioglu et al. (2017) Y 89.7% Accuracy

0.1% EER, 0.72% HTER
2.67% EER, 0% HTER
0.35% EER, 0.21% HTER
1.17% Average HTER
2.4% EER

1.4% HTER

Atoum et al. (2017)

Chan et al. (2018)
Ito et al. (2017)

2018 Lietal. (2018)

5.5% EER

5.8% EER

8% EER

1.6% APCER, 1.6% BPCER, 1.6% ACER
2.7% APCER, 2.7% BPCER, 2.7% ACER
3 2.7% APCER, 3.1% BPCER, 2.9% ACER
4 9.3% APCER, 10.4% BPCER, 9.5%
Liu et al. (2018) ACER

S1 3.58% APCER, 3.58% BPCER, 3.58%
ACER

Zl0

[y

O|O|Q| o=
[\

Continued on next page




Tabela 3.3 — continued from previous page

Year Work Dataset Results
S2 0.57% APCER, 0.57% BPCER, 0.57%
2018 ACER
S3 8.31% APCER, 8.31% BPCER, 8.31%
ACER
+ 27.6%
*Cy 28.4%
C 2.4% EER
Luoetal. (2018) I 0.02% EER, 0.39% HTER
I 28.5% HTER
Cum 41.1% HTER
Ol 1.2% APCER, 1.7% BPCER, 1.5% ACER
Jourabloo et al. (2018) 02 4.2% APCER, 4.4% BPCER, 4.3% ACER
03 4% APCER, 3.8% BPCER, 3.6% ACER
04 5.1% APCER, 6.1% BPCER, 5.6% ACER
Singh e Arora (2018) H 99.41% accuracy
5019 | Liuetal. (2019c) IC M, | 959% AUC
S 17.1% APCER, 16.6% BPCER, 16.8%
ACER, 16.1% EER
Liu et al. (2019b) E 99.8% Accuracy
Chen et al. (2020) *C 33.4% HTER
+ 30% HTER
Ol 5.1% APCER, 6.7% BPCER, 5.9% ACER
02 7.6% APCER, 2.2% BPCER, 4.9% ACER
03 3.9% APCER, 7.3% BPCER, 5.6% ACER
04 11.3% APCER, 9.7% BPCER, 9.8%
ACER
S1 1% ACER
S2 0.28% ACER
S3 12.10% ACER
Ol 1.2% APCER, 2.5% BPCER, 1.9% ACER
Yang et al. (2019) 02 4.2% APCER, 0.3% BPCER, 2.2% ACER
03 4.7% APCER, 0.9% BPCER, 2.8% ACER
04 6.7% APCER, 8.3% BPCER, 7.5% ACER
+ 18.7% HTER
*Cy 25% HTER
Shen et al. (2019) L 99.8% TPR @FPR=10e-4
M 17.69% HTER, 88.06% AUC
#C 24.5% HTER, 84.51% AUC
Shao et al. (2019) 1 22.19% HTER, 84.99% AUC
0 27.98% HTER, 80.02% AUC
Wang et al. (2019) Cs 0.2% APCER, 0.3% NPCER, 0.2% ACER
Koshy e Mahmood (2019) N 100% Accuracy
. I 0% APCER, 0% BPCER
Lietal. (2019) 0 5.3% APCER, 4.7% BPCER

Continued on next page
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Tabela 3.3 — continued from previous page

Year Work Dataset Results
o1 2% APCER, 0% BPCER, 1% ACER
2020
02 2.5% APCER, 1.3% BPCER, 1.9% ACER
03 3.2% APCER, 2.2% BPCER, 2.7% ACER
Wang et al. (2020c) 04 6.7% APCER, 3.3% BPCER, 5% ACER
S1 0.4% ACER
2 0.02% ACER
S3 2.78% ACER
D 4.55% ACER
I 17% HTER
Cur 22.8% HTER
Wang et al. (2020a) M 90.1% AUC, 17.02% HTER
*C 87.43% AUC, 19.68% HTER
+ 86.72% AUC, 20.87% HTER
0 81.47% AUC, 25.02% HTER
Garg et al. (2020) N 99% Accuracy
ol 1.7% APCER, 0.8% BPCER, 1.3% ACER
02 1.1% APCER, 3.6% BPCER, 2.4% ACER
03 2.8% APCER, 1.7% BPCER, 2.2% ACER
04 5.4% APCER, 3.3% BPCER, 4 4% ACER
Zhang et al. (2020) S1 0.28% ACER
S2 0.1% ACER
S3 5.59% ACER
*C 30.3% HTER
A 22.4% HTER
A 19.9% HTER
*C 41.9% HTER
. ol 1.5% APCER, 7.7% BPCER, 4.6% ACER
Deb e Jain (2021) 02 3.1% APCER, 3.7% BPCER, 3.4% ACER
03 2.9% APCER, 2.7% BPCER, 2.8% ACER
04 83% APCER, 13.3% BPCER, 10.8%
ACER
ol 0.4% APCER, 0% BPCER, 0.2% ACER
02 1.8% APCER, 0.8% BPCER, 1.3% ACER
03 1.7% APCER, 2% BPCER, 1.8% ACER
04 4.2% APCER, 5.8% BPCER, 5% ACER
Yu et al. (2020) S 0.12% ACER
2 0.04% ACER
S3 1.9% ACER
A 6.5% HTER
*Ch | 29.8% HTER
*C 10.44% HTER, 95.94% AUC
. 0 15.61% HTER, 91.54% AUC
Jia et al. (2020) M 7.38% HTER, 97.17% AUC
A 11.71% HTER, 96.59% AUC
2021 | Liu et al. (2021b) Cs 0.296% ACER

Continued on next page
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Tabela 3.3 — continued from previous page

Year Work Dataset Results
Zheng et al. (2021) N 99.5% Accuracy, 0.995% AUC, 0.1% EER
2021
S1 0% ACER
S2 0% ACER
S3 4.35% ACER
0]} 1.4% APCER, 1.8% BPCER, 1.6% ACER
02 2.6% APCER, 0.8% BPCER, 1.7% ACER
03 2% APCER, 3.9% BPCER, 2.8% ACER
04 4.2% APCER, 4.6% BPCER, 4.4% ACER
*Cum 27.4% HTER
*] 28.1% HTER
Liu et al. (2021a) Cg 2.4% APCER, 1.7% BPCER, 2.0% ACER
*] 21.3% HTER
Chen et al. (2021) *M 14.8% HTER
*C 32.3% HTER
C 1.34% EER
I 0.06% EER, 0.02% HTER
o1 0.78% APCER, 1.06% BPCER, 0.92%
ACER
02 3.84% APCER, 2.11% BPCER, 2.88%
Wang et al. (2021b) ACER
03 1.9% APCER, 3.8% BPCER, 2.8% ACER
04 4.0% APCER, 3.0% BPCER, 3.5% ACER
*M 19.4% HTER, 86.87% AUC
*C 22.03% HTER, 87.71% AUC
*] 21.43% HTER, 88.81% AUC
*0 18.26% HTER, 89.4% AUC
*Swm, 36.93% APCER, 12.51% BPCER, 24.72%
A ACER
(mi-
xed)
*Sar 14.7% HTER
George e Marcel (2021) W 12 7% ATER
I 0.28% EER
C 0.53% EER
M 0.18% EER
o1 0.6% APCER, 0% BPCER, 0.4% ACER
02 1.7% APCER, 0.6% BPCER, 1.2% ACER
Quan et al. (2021) 03 1.5% APCER, 2.2% BPCER, 1.7% ACER
04 5.2% APCER, 4.6% BPCER, 4.8% ACER
*M 7.82% HTER, 97.67% AUC
*C 4.01% HTER, 98.96% AUC
* 10.36% HTER, 97.16% AUC
*Q 14.23% HTER, 93.66% AUC
*M 15.4% HTER, 91.8% AUC
*C 24.5% HTER, 84.4% AUC
Wang et al. (2021a) A 16.4% HTER, 92% AUC
*Q 23.1% HTER, 84.3% AUC

Continued on next page
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Tabela 3.3 — continued from previous page

Year Work Dataset Results
*M 6.67% HTER, 98.75% AUC
2022 Wang et al. (2022)
*C 10% HTER, 96.67% AUC
* 8.88% HTER, 96.79% AUC
*Q 13.72% HTER, 93.63% AUC

3.3 KEY PROBLEMS

From this understanding of the state of the art, one main problem can be identified:
generalization capability in classification models. This applies to multiple aspects of the
classification, such as acquisition device, attack types and environmental conditions.

Another important issue for the scope of this work is that many methods exploit the
abundance of information in videos, with models that extract cross-frame features. Since this
work handles single-image liveness detection, its approach must face the difficulties that come
with having even less input resources.

3.4 CONCLUDING REMARKS

The state of the art in liveness detection was studied and discussed, including the most
relevant dataset. This work will build upon the idea of using estimated depth for enhanced
classification, in particular using the network architectures presented in Chapter 2 for depth
estimation and liveness classification.



29

4 PROPOSED SOLUTION FOR LIVENESS DETECTION

This chapter explains the proposed approach for liveness detection, a model based on
two neural networks - one for obtaining depth and one for classification. The general architecture
is demonstrated and its details are further discussed.

4.1 PROPOSED ARCHITECTURE

> LivForNet

Input image 4\

1V

EB Fusion function
DepthNet —— Depth map i 3-channel (RGB) image

Avrtificial Neural Network

Figura 4.1: Proposed network architecture

Previous work has already used depth for enhanced liveness detection (Atoum et al.,
2017; Liu et al., 2018; Shao et al., 2019; Wang et al., 2019, 2020c; Zhang et al., 2020; Zheng
et al., 2021; Wang et al., 2021b), as explored in Chapter 3. The usual approach is to obtain the
depth map for a given input in an adversarial scheme, and this work maintains this idea. The
main difference in this proposal is using the Pix2Pix network for depth map estimation, as its
aptitude for image domain translation may be useful in obtaining depth.

‘ 2
Ground-truth
depth map

—> Generator 1

** Discriminator —— Verdict

i % Generated depth (illustration)

Face image

A 4

Figura 4.2: Conditional adversarial scheme for learning to generate depth maps. The discriminator first observes a
pair with a generated depth map (1) and then one with a ground-truth depth (2).

Figure 4.2 illustrates the adversarial scheme for learning to generate face depth. From a
ground-truth depth map D and an RGB face image /, a generator network G is trained to output
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a realistic face depth map G (/, D). At the same time, the discriminator network D is trained to
determine whether an input (x, y), corresponding to a face image and a depth map, is real or not -
that is, if y is a generated depth map. In this approach, the adversarial scheme is the Pix2Pix
network (Isola et al., 2017).

Input image Depth map

10

Concatenated output image

Figura 4.3: Illustration of the concatenation function.

Figure 4.1 illustrates the network’s architecture. From a given input, the Pix2Pix network
obtains its depth map, which is fused to the original image and fed as input to the classifier network
(more on the fusion method below). Do notice this scheme is not end-to-end differentiable: the
Pix2Pix network is completely trained before the backbone classifier.

Divide by Normalized

Channel mean _ Mean of depth maximum mean of depth

Depth map map channels map channels

Blended
input image

@ Element-wise multiplication
InpUt InFzIgf= i 3-channel (RGB) image

Single-channel (black-and-white) image

Figura 4.4: Illustration of the blending function.

The effectiveness of seven different backbone classifier networks is studied: FeatEmbed-
der, the same as in (Wang et al., 2021b); three sizes of ConvNeXt and three sizes of the classic
ResNet. As the ConvNeXt family has recently shown superior performance in diverse computer
vision tasks, the ResNet results are expected to serve as baseline values improved by the use of
ConvNeXt, and that FeatEmbedder can be an approximation of how Pix2Pix compares to the
adversarial scheme implemented in (Wang et al., 2021b).

D

max{maxﬁ,l}

ol 4.1)

Two possibilities for fusion methods are explored, namely concatenation and blending.
The concatenation function is illustrated in Figure 4.3; it is performed with respect to the channels
axis (i.e., the depth map is appended horizontally to the original image). From two images of
dimensions C X H X W (channels, height and width, respectively), the output of the concatenation
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function will be an image of dimensions C X H X 2W. The blending function, illustrated in
Figure 4.4 and described by Equation 4.1, involves two intermediary depth pre-processing steps:
from an input image / and its corresponding depth map D, the mean of all three depth map
channels D (i.e., the depth map’s luminance) is obtained and normalized by its maximum (or
not normalized, in the particular case where the maximum equals zero). Finally, the Hadamard
product between the normalized D and I is computed.

4.2 CONCLUDING REMARKS

This work’s proposed approach has been presented in detail, in different levels of
abstraction. The adversarial scheme is not further discussed, and remains as here presented in
the experiments in Chapter 5. Two possible fusion methods were presented, namely blending
and concatenation, and the choice of a definite (or "best") method for final experimentation is left
for Chapter 5, where the decision is made after adequate empirical evaluation.
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S EXPERIMENTS

This chapter is split into two major sections: Section 5.1 describes the methodology
applied for evaluating the proposed architecture, while Section 5.2 presents the obtained results.

5.1 METHODOLOGY

5.1.1 Databases

Two databases are used for training and evaluation, namely CASIA-FASD and Replay-
Attack. Both databases include one set for training and one for validation. For model validation,
results are presented in intra-dataset protocols, i.e., the model is trained and validated in disjoint
subsets of the same dataset. For model testing, results are presented in both intra- and cross-dataset
protocols.

Table 5.1 describes these protocols and their respective acronyms. HTER values are
reported for all protocols.

Acronym | Train Dataset | Validation Dataset
C CASIA-FASD | CASIA-FASD
R Replay-Attack | Replay-Attack
CR CASIA-FASD | Replay-Attack
RC Replay-Attack | CASIA-FASD

Tabela 5.1: Evaluation protocols to be used in this work.

Since the chosen databases are composed of videos and this work contemplates image
liveness, an additional frame extraction step is necessary. For each video sample, five equidistant
frames are obtained to compose a resulting image dataset. Each frame has the same label as the
source video and is a separate sample in the resulting dataset, which means two frames from
the same source video will be treated as completely different image samples (i.e., their obvious
similarities are ignored).

Two extra steps are also taken: face cropping and depth map ground truth generation.
In the face cropping step, all samples are cropped to the face region. In the depth map ground
truth generation step, all samples are mapped to a depth map - if the sample is a spoof, its depth
map is just a black map; if it is real, the depth map is generated with the 3DDFA_V2 network
(Guo et al., 2020). Both steps use code from the official 3DDFA_V?2 GitHub repository (Guo
et al., 2018), and the whole process of frame extraction is illustrated in Figure 5.1

5.1.2 Networks and Training Settings

The backbone models used for classification are FeatEmbedder, ResNet (18, 50 and 152)
and ConvNeXt (tiny, base and large). All seven networks are described in Chapter 2. Pix2Pix is
used for depth estimation.

Both the ResNet and ConvNeXt families have available PyTorch implementations with
pretrained weights, which are used. This means all backbones go through a finetuning process
on the train/test protocols, except for FeatEmbedder (which has no pretrained weights). The
FeatEmbedder official implementation, made available by the authors (Wang et al., 2021b), is
used.
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1. Frame extraction and face cropping 2. Depth generation
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Figura 5.1: Processes for video frame extraction (1) and face depth generation (2). Samples belong to the
MSU-MFSD (Wen et al., 2015) dataset.

For depth estimation, the Pix2Pix used network has no preset weights, and the used
implementation follows the official one made available by the authors. Training takes 500 epochs,
with a batch size of 16.

For all backbone classifier networks a Cross-Entropy loss function with label smoothing
(0.1) is used. For the ConvNeXt models, the AdamW optimizer is used, with a learning rate of
0.004 and a 0.05 weight decay factor. For ResNet models, the Stochastic Gradient Descent (SGD)
optimizer is used, with a learning rate of 0.1, a weight decay of 0.0001 and 0.9 momentum.
Finally, for the FeatEmbedder network, the Adam optimizer is used, with a weight decay of 0.01.
The training stage takes 600 epochs, with a batch size of 8.

All input images are resized to a resolution of 256 by 256, and no data augmentation is
employed. Finally, all methods are implemented with the Python PyTorch (Paszke et al., 2019)
library, so any parameters not detailed in this work follow the defaults from PyTorch functionality.

5.2 RESULTS

Table 5.2 compares HTER values for each fusion method across all networks in intra-
dataset protocols. Since the ground-truth depth represents an upper bound of depth map quality,
this allows for the analysis of two important questions: how the two fusion methods compare to
each other and how well Pix2Pix-generated depth compares to the ground truth.

C R
Model GT Gen GT Gen

Bl Cat Bl Cat Bl Cat Bl Cat

FeatEmbedder 3% 7.556% | 24.944% | 49.444% 0% 14.375% | 31.238% 50%
ResNet 18 3% 3.111% 50% 50% 3.375% 0% 26.237% | 26.725%
ResNet 50 50% 3.37% | 50.074% 50% 0% 0% 27.925% | 26.013%
ResNet 152 4.889% | 7.667% 50% 50% 1.25% 0% 29.738% | 30.487%

ConvNeXt Tiny 50% 50% 50% 50% 50% 50% 50% 50%

ConvNeXt Base 3% 50% 50% 50% 50% 50% 50% 50%

ConvNeXt Large 3% 50% 50% 50% 50% 0% 50% 50%

Tabela 5.2: HTER values for ground-truth (GT) and generated (Gen) depth with both fusion methods (Bl: Blending,
Cat: Concatenation) across all backbone classifiers on intra-dataset protocols
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From Table 5.2, Table 5.3 is constructed, listing the fusion method with the lowest
HTER value for each protocol considering ground-truth depth, generated depth or both. On
Replay-Attack with ground-truth depth, there is a tie between both methods because an error
rate of 0% is obtained. With CASIA-FASD, there is also little difference between ground-truth
results (3% to 3.111%), which indicates both fusion methods are adequate or at least that they
are not as strong determiners of performance as the input depth map’s quality. For all subsequent
analysis, the blending function is chosen for fusing depth due to its higher frequency in Table 5.3.
Furthermore, the issue with generated depth map quality can be observed in Figure 5.2. The
Pix2Pix networks could not find stability in convergence.

Pix2Pix Loss Values on CASIA-FASD (Intra-Dataset) Pix2Pix Loss Values on Replay-Attack (Intra-Dataset)
— 5001 = Gl — 5001 = Gl
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(a) Convergence graph for CASIA-FASD. (b) Convergence graph for Replay-Attack.

Figura 5.2: Pix2Pix model convergence for both datasets on intra-dataset protocols. D! is the discriminator loss
(scaled for easier observation) and G/ is the generator loss, both as described in (Isola et al., 2017).

Ground Truth | Generated Both
C | Blending Blending Blending
R |- Concatenation | Concatenation

Tabela 5.3: Fusion method with the lowest HTER value for each protocol with ground-truth depth, generated depth
and both.

For model testing, Tables 5.4 and 5.5 compare HTER values for the chosen fusion method
across all networks for ground-truth and generated depth against using no depth information
in intra- and cross-dataset protocols, respectively. Note that all intra-dataset data is present in
Table 5.2 except for the non-depth columns (repeated columns are added for readability). Again,
since the ground-truth depth maps are an upper bound of depth map quality, this allows an
understanding of how useful the depth information is for these classifiers.

5.3 CONCLUDING REMARKS

With the results from Section 5.2, an analysis of the main questions in this work is
performed.

The first one is how depth information enhances a classifier’s performance for the task
of face liveness detection. From Tables 5.4 and 5.5 it can be observed that in most variations
of models and protocols the depth-fed backbones perform better (even when this depth is not
ground truth). This indicates that depth does, in fact, contribute to the classification capability of
a model. This has been explored in related work (Zheng et al., 2021), and the presented results
are consistent with findings of other authors.

The second question comes from Chapter 4. Two methods were presented for fusing
depth maps with face images; which one performs best? Table 5.2 show the HTER values
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C R

Model N GT Gen N GT Gen
FeatEmbedder | 47.185% 3% 24.944% 50% 0% 31.238%
ResNet 18 50% 3% 50% 12.85% | 3.375% | 26.237%
ResNet 50 47.889% | 50% | 50.074% | 11.85% 0% 27.925%
ResNet 152 49.407% | 4.889% 50% 17.825% | 1.25% | 29.738%

ConvNeXt Tiny 50% 50% 50% 50% 50% 50%

ConvNeXt Base 50% 3% 50% 50% 50% 50%

ConvNeXt Large 50% 3% 50% 50% 50% 50%

Tabela 5.4: HTER values for backbones with no depth (N), ground-truth depth (GT) and generated depth (Gen) on
intra-dataset protocols.

CR RC

Model N GT | Gen N GT Gen
FeatEmbedder | 58.625% | 10% | 50.25% | 47.444% | 33.111% | 43.593%
ResNet 18 50.575% | 0% 50% 54.296% 3% 43.63%
ResNet 50 52.525% | 50% 50% 54.407% 3% 43.63%
ResNet 152 50% 50% 50% 57.185% | 4.222% | 43.667%

ConvNeXt Tiny 50% 0% 50% 50% 3% 50%

ConvNeXt Base 50% 50% 50% 50% 3% 50%

ConvNeXt Large 50% 0% 50% 50% 3% 50%

Tabela 5.5: HTER values for backbones with no depth (N), ground-truth depth (GT) and generated depth (Gen) on
cross-dataset protocols.

for all variations of protocols and networks with both ground-truth and generated depth maps.
Additionally, Table 5.3 summarizes the best fusion method for each combination of depth type
and protocol. As every result but one for ground-truth depth are actually draws, and the one
exception consists of a 3.7% difference, it is reasonable to reach the conclusion that the fusion
method is not as strong a factor in model performance as the depth map quality. For the generated
depth maps, results are balanced (half the results are in favor of blending fusion, and the other
half are in favor of concatenation). When considering both types of depth maps, results are also
balanced, since this result will be biased towards the less-effective type (generated, as opposed to
ground-truth). It is understood that further experiments should be performed to better understand
the relationship between fusion methods and model performance.

Another matter was how well the ConvNeXt family would perform in the task of face
anti-spoofing. With no information beyond the RGB input, results are far from the state of the
art, but depth information may make these models stronger competitors (Tables 5.4 and 5.5).
However, this improvement is not consistent across evaluation protocols.

Finally, Pix2Pix is discussed as a cGAN for depth estimation. Isola et al. (2017) aimed
to develop a framework that would require no hand-engineering of loss functions for different
image-to-image translation tasks. The developed adversarial scheme has shown good results in
different instances of the image-to-image translation problem, with even positive community
engagement. For depth estimation in the scenario of face spoofing, however, where very similar
images may have very different face depth maps, Pix2Pix could not perform well enough. This
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can be observed in the difference between errors from ground-truth to generated depth in Tables
5.4 and5.S.
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6 CONCLUSION

The trajectory of the state of the art in face liveness detection has been thoroughly
studied and summarized in this work. Major datasets have also been listed, and the current
challenges in the field were discussed. From an understanding of these challenges a novel
approach was proposed, namely using the Pix2Pix network for estimating depth that would then
be used as auxiliary information in determining the presence of spoofs in face images. Presented
experiments validate the value of depth in this task, and the Pix2Pix network reached insufficient
results when trained in an isolated manner.

This work opens many possibilites for future development. First, it could be valuable
to study the viability of including Pix2Pix in an end-to-end differentiable training scheme with
the classifier network, so as to improve depth map generation quality. Following this idea, the
Pix2Pix generator and discriminator networks could show good performance when inserted in an
architecture such as the one presented by Wang et al. (2021b), where (1) there’s end-to-end model
integration and (2) it is not the generator’s output that is fed as input to the classifier backbone,
but an inner layer.

Another path is to replace Pix2Pix with 3DDFA_V2 (Guo et al., 2020), finetuning it to
generate empty depth maps for spoof images. This has two advantages over the Pix2Pix approach:
first, the 3DDFA_V2 has been pretrained for adequate 3DMM parameter generation, allowing
it to achieve the state of the art (which is why it has been chosen for ground-truth depth map
creation in the present work). Finetuning weights poses a clear advantage over training from
randomly initialized ones (i.e., what was done with Pix2Pix). Second, since the 3DDFA_V2
network generates 3DMM parameters - orders of magnitude fewer than the images generated by
Pix2Pix -, it has a better tendency towards convergence (Guo et al., 2020).
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